题意 给出n个二维点(2e5) 和 q个询问(1e4) 每个询问给lr 问点l到r间有多少对点的曼哈顿距离<=d 点的坐标<=108
想出了莫队算法 复杂度n^1.5 看起来很科学 但是每次del和add点是直接进行暴力扫当前LR区间的点来算 ans将要增加/减少多少 实际这样的复杂度是V^2.5 会t掉
由于是在二维上找一定范围的点的数目 就可以想到KDTree V^1.5log(n)在15s下还是很科学的
做了一些曼哈顿距离的getdis函数 调完又t了。。
我使用了一下青岛的K的写法 开出三个维度 x y id 每次询问的是 和x1y1曼哈顿距离<=d 并且 L <= id <= R 的点 因为曼哈顿不是一个矩形 是一个正方形旋转了的图形 搜起来会比较麻烦
但是我感觉这个就是正解。。在网上也百度不到题解 于是出去问了一下别人对这个题的看法 然而也是莫队+KDT做的 就很迷茫
要来代码一看 有一个和我不同的是这样的 把输入进去的xy 都变成x+y 和 x-y 在查询的时候不围绕改变后的xy做一个曼哈顿的查询 而是直接查询矩形
xl = x - d xr = x + d yl = y - d yr = y + d 这样
查了查对这个优化的意义 这个优化的意思 是 把曼哈顿距离转化为切比雪夫距离
http://m.blog.csdn.net/article/details?id=47259831 这个里面讲的
旋转之前两个点的曼哈顿距离是d 那么旋转后两个点的切比雪夫距离也是d 所以由一个点就可以求出来一个矩阵出来 KDT跑矩阵很快
还有一个点 就是KDT的删除点
KDT的插入点是很简单的logn操作 但是删除点的话 由于这个点可能管辖一定的点 删除了它就需要从它的孩子中找出一个点来管辖这个区域 相当于每次删除都重构
其实不需要这样 我们可以先把这棵树建出来 一开始这个树只有形状 但是点都没有放进去 每次放进去一个点就相当于点亮一个点
可以做一个类似于离线的操作 我们现在已经知道哪些点会被插入进这个树了 只要它进去 我们就记录下来
然后用这些点的形状建树 虽然一开始没有点被插进去
我们在结构体里面定义val代表当前的管辖点存在与否/有多少个 sum代表这个区域有多少个 fa代表这个点的父亲节点是谁
所以每次删除或者插入一个点 只需要改掉这个点的val 然后把这个点及其先辈的sum改了就可以了 由于我们事先知道了所有的点 所以建出来的树深度还是logn的
这种KDT写法也是很优雅的。。
#include #include #include #include #include